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Optical remote sensing (ORS) of reflected sun light has been used to assess oil spills in the ocean for several decades. While most
applications are toward simple presence/absence detections based on the spatial contrast between oiled water and oil-free water,
recent advances indicate the possibility of classifying oil types and quantifying oil volumes based on their spectral contrasts with
oil-free water. However, a review of the current literature suggests that there is still confusion on whether this is possible and, if
so, how. Here, based on the recent findings from numerical models, laboratory measurements, and applications to satellite or
airborne imagery, we attempt to clarify this situation by summarizing (1) the optics behind oil spill remote sensing, and in turn,
(2) how to interpret optical remote sensing imagery based on optical principles. In the end, we discuss the existing limitations
and challenges as well as pathways forward to advance ORS of oil spills.

1. Introduction

Remote sensing through airborne or satellite platforms pro-
vides rapid and synoptic measurements of the targets, there-
fore has been used for decades to assess oil spills in the ocean,
from near real-time mapping to postspill assessment (see
reviews by [1–5]). As of 22 August 2020, a keyword search
of “remote sensing” and “oil spill” in http://webofscience
.com resulted in 679 papers. The remote sensing techniques
range from synthetic aperture radar (SAR), Light Detection
and Ranging (LiDAR), thermal infrared, and optical means
(visible–near infrared–shortwave infrared). Of these tech-
niques, SAR provides imagery under all-weather conditions,
where the presence of oil on the ocean surface suppresses sur-
face capillary waves and short gravity waves, leading to
reduced Bragg scattering and therefore negative contrast
from the surrounding water in SAR imagery. One limitation
is that due to the single band (or wavelength) used in SAR
measurements, most information is from the spatial contrast
of the detected feature along with the feature’s morphology
or texture. Unless some a priori knowledge is available, this
often makes it difficult to distinguish surface oil from other

features that can also make similar spatial contrasts in SAR
imagery (e.g., phytoplankton surfactant, freshwater slicks,
current shears, floating algae, and among others), let alone
classifying oil types or quantifying oil volume despite some
preliminary attempts [6, 7].

Another popular technique is optical remote sensing
(ORS) of reflected sun light in the visible-near infrared-
shortwave infrared (vis-NIR-SWIR) wavelengths, which is
the subject of this paper. Although ORS imagery suffers from
frequent clouds (i.e., about 2/3 of the global ocean is covered
by clouds at any moment, [8]), this limitation is compensated
by the multiple ORS sensors currently in orbit and multiband
spectral data from any individual sensor. Indeed, all ORS
sensors, regardless of their spatial resolution, swath width,
sensitivity (i.e., signal-to-noise ratio), or number of spectral
bands, can be used for oil spill assessment. The use of ORS
to assess oil spills can actually be traced back to the early
1980s, when Hooper et al. [9] used GOES, TRIOS, and ERTS
(Landsat) satellite images to observe oil distributions after the
Ixtoc oil spill offMexico. More complete analysis of this spill
has been provided by Sun et al. [10]. While it is difficult to
provide a complete list, Table 1 shows the most often used
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ORS sensors on this subject, based mainly on the data avail-
ability to a user. Applications of these ORS imagery to oil
spill assessment can be found in numerous references, for
example, Hu et al. [11, 12] and Bulgarelli and Djavidnia
[13] for MODIS; Sun and Hu [14] for VIIRS; Kolokoussis
and Karathanassi [15] for MSI; Taravat and Frate [16], Sun
and Hu [17], and Lu et al. [18] for Landsat sensors; and
Lammoglia and de Souza Filho [19] for ASTER.

Although earlier ORS studies relied primarily on spa-
tial contrasts to detect oil features (e.g., [20, 21]), recent
studies started to use more spectral bands to obtain more
information from the detected features in order to discard
look-alikes, classify oil types, and/or quantify oil concen-
tration or volume. These are based on either visual inter-
pretation of multiband composite images [5, 17, 22] or
analyses of the feature’s spectral shapes [18, 23]. Indeed,
both theoretical work, based on Monte-Carlo simulations
[24–27], and laboratory experimental work under con-
trolled conditions [23, 28–32] suggest a direct connection
between multiband or hyperspectral reflectance and oil
presence, oil type, and/or oil quantity.

However, these advances have been largely overlooked
in some of the recent literature, where disputes on the
capacity of ORS in oil spill assessment may create confu-
sion in the research community. For example, in a serious
of reviews, Fingas and Brown [2–4] and Fingas [33] still
questioned the value of ORS in oil spill assessment, espe-
cially on its ability to estimate oil thickness beyond a
few micrometers (corresponding to rainbow colors in the
field). This is despite being refuted by Svejkovsky et al.
[34]. Clearly, the potential and limitations of ORS in oil
spill assessments need to be clarified.

Here, based on the most recent literature, this paper
attempts to clarify the following concepts: (1) what are
the oil’s optical properties and how do they impact the
spectral reflectance (i.e., color shades) in the vis-NIR-
SWIR domain? (2) In turn, what is possible and what
are the challenges when applying the above knowledge in
real-world ORS applications? To address these questions,
rather than presenting a comprehensive literature review,
we summarize the principles in these two aspects with
examples. Interested readers may read the cited literature
for more details. Likewise, although passive remote sensing
using ultraviolet sun light and active remote sensing using
laser-induced fluorescence have also been shown useful,

because most satellite sensors are not equipped with such
a capacity, they are not discussed here.

2. Optical Properties of Oil and Oil-
Water Mixture

There are various types of oil in marine oil spills, ranging
from crude, lubricating oil, diesel, gasoline, kerosene, and
condensate. Even for crude oil, there are still different types,
for example, Brent crude oil, West Texas Intermediate, Tapis
crude oil, andMiddle East crude oil, which have different sul-
fur content and API gravity (index of the density of a crude
oil or refined product). In the marine environments, spills
of these various types of oil can come from oil platforms, ship
discharge, oil pipeline leaks, unexpected disasters, and land
based runoffs [35]. Although reports of the optical properties
(absorption, scattering, reflectance) of most of these types
have been scarce in the literature, there are some exceptions,
from which we may generalize. We believe that although the
optical properties of these different oil types may vary, they
should follow the same general principles as described below.

2.1. Absorption and Scattering. The complex reflection index,
m = n + i k, of two types of crude oil, Romashkino and Petro-
baltic, has been measured in the laboratory by Otremba [36]
(Figure 1). Here, the real part (n, commonly called refraction
index) defines the surface Fresnel reflectance and together
with the size distribution of oil droplets determines the scat-
tering coefficients, which can be modeled using Mie theory
(see Chap 3 of [37]). The imaginary part (k) determines the
absorption coefficient through a ðm−1Þ = 4πk/λ where λ is
the wavelength in m (the visible range of 400–700nm corre-
sponds to 4–7 × 10−7m). Otremba [36] proposed that other
types of crude oil may have their n and k values bounded
by these two types.

These results suggest that for the visible range of 400–
700 nm, (1) crude oil has a real refraction index of 1.47–
1.51, higher than seawater (~1.34), and (2) crude oil has
extremely high a, which decreases exponentially with
increasing wavelengths. At 400nm, aoil ranges between
22,000m-1 for Petrobaltic and 408,000m-1 for Romashkino.
As a comparison, most seawaters have asw < 0:1m−1 at
400 nm. At 700nm, aoil ranges between 540m-1 for Petrobal-
tic and 62,800m-1 for Romashkino, compared to asw of
0.65m-1.

The absorption measurements have been repeated
recently by Clark et al. [23] and Lu et al. [30] using two other
types of crude oil, Deepwater Horizon crude oil and Yiyang
oil, respectively. Although their magnitudes differ from those
reported in Otremba [36], they follow the same patterns:
extremely high and exponentially decreasing aoil.

When oil is spilled in seawater, it is often weathered to
form emulsions through physical and chemical processes or
under human influences (i.e., application of dispersant) [38,
39]. Recently, laboratory experiments further separated them
to water-in-oil (WO) emulsions and oil-in-water (OW)
emulsions [30]. In the experiments, the only stable state of
these oil-water mixtures is 0%–1.3% oil concentration for
OW emulsions and 45%–100% oil concentration for WO

Table 1: Some of the ORS sensors for oil spill assessments and their
sensor characteristics. Listed are those currently still in orbit whose
data are available to the public.

Sensor Start Res. (m) # of VIS-SWIR bands Revisit (days)

MODIS 2000 250–1000 16 (412–2130) 1–2

VIIRS 2012 375–750 14 (412–2130) 1

OLCI 2016 300–1200 21 (400–1020 nm) 2–3

GOCI 2011 500 8 (412–865 nm) Hourly

MSI 2015 10–60 13 (443–2190 nm) 5

Landsat 1972 30–60 4–8 (443–2151 nm) 16

ASTER 1999 15–30 9 (560–2390 nm) 16
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emulsions. The results from Lu et al. [30] show that regard-
less of the oil concentration or oil emulsion type, as long as
oil is mixed with water, their absorption coefficients are
much higher than pure water, with an exponentially decreas-
ing slope in the visible and NIR wavelengths (Figure 2). The
experiments of Clark et al. [23] also showed similar results
for the DWH oil emulsions.

From these experiments, the optical properties of crude
oils can be generalized as follows: (1) higher refraction index
than seawater (~1.5 versus ~1.34), (2) much higher absorp-
tion coefficient than seawater in the visible wavelengths
regardless of the oil emulsion state (nonemulsified, OW, or
WO emulsions), and (3) there has been a lack of scattering
measurements in the literature because scattering depends
on both refraction index and oil droplet size distributions
as well as on oil concentration in the oil-water mixture, yet
from the reflectance measurements below, one can infer that
oil-water mixture has much higher scattering than seawater
in all vis-NIR-SWIR wavelengths.

2.2. Reflectance. Reflectance of various types of crude oil has
been measured from controlled experiments in containers
of finite size [23, 28–32]. In these experiments, the crude oil
in either its original form or after mixing with water to create
emulsions was put on top of water, from which spectral
reflectance was measured using a portable spectrometer and
an artificial light source or sunlight (for outdoor measure-
ments). Although experimental results vary due to different
types of oil and different experimental settings, in general,
they agree with each other in the following way (Figure 3):

(1) For both oil types (nonemulsified crude oil and oil
emulsions), there is no narrow-band reflectance fea-
ture in the visible wavelengths, i.e., there is no local
reflectance maximum or minimum. This is because
of lack of narrow-band features in the oil’s complex
refraction index. In contrast, there are narrow-band
features in the NIR-SWIR spectral range around
1.2, 1.4, 1.7, and 2.3μm due to molecular combina-
tions of C-H, CH2, CH3, or O-H [29]

(2) For nonemulsified crude oil, reflectance decreases
with increasing oil thickness, with more negative

oil-water contrast in the shorter wavelengths
(Figure 3(a), [31]). In the NIR-SWIR wavelengths,
reflectance shows virtually no change with increasing
oil thickness

(3) For oil emulsions, reflectance characteristics are the
opposite of the nonemulsified oil: most changes
occur in the NIR-SWIR wavelengths (Figure 3(b),
[23, 30]), including the enhanced reflectance in these
wavelengths as well as the local reflectance minima
due to the various C-H and O-H molecular bonds

(4) Between the two types of oil emulsions (OW and
WO), there are two distinguishable characteristics.
One, while the enhanced reflectance mostly occurs
in the NIR wavelengths (0.7–1.1μm) for the OW
emulsions, for the WO emulsions such enhance-
ments mostly occurs in the SWIR wavelengths
(1.1–2.2μm) (Figure 3(b)). Such a contrast forms
the basis to differentiate OW from WO emulsions
from ORS imagery. Two, while reflectance in the
NIR and SWIR increases with increasing oil con-
centration for OW emulsions (Figure 4(a)), it
decreases with increasing oil concentration for
WO emulsions (Figure 4(b)). The latter creates an
opposite effect from the mixed pixel effect in ORS
imagery, making interpretation of oil concentration
difficult (see below)

(5) Reflectance of WO emulsions in the NIR and
SWIR is a monotonic function of oil thickness
when oil concentration is stable in the surface oil
layer (Figure 6(b) of [23]). The same phenomenon
has been observed independently by Lu et al. [30]
(Figure 5(a)). In turn, the later can be derived
from the former as long as oil concentration is
fixed (Figure 5(b))

The reflectance measurements in the above examples
were conducted over different types of crude oil and oil-
water mixtures. While other types of oil (diesel, gasoline,
condensate, etc.) are still to be measured in a similar fashion,
preliminary results of Yang et al. [32] suggest that they
appear to follow the general principles presented here.
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Figure 1: Real and imaginary parts the complex refraction index crude oil [36].

3Journal of Remote Sensing

D
ow

nloaded from
 https://spj.science.org at N

ational O
ceanic and A

tm
ospheric A

dm
inistration H

eadquarters (M
A

IN
) on January 11, 2024



3. Interpretation of ORS Images

The inherent optical properties (IOPs) (i.e., complex refrac-
tion index in Section 2.1) of crude oil and apparent optical
properties (AOPs) (i.e., spectral reflectance in Section 2.2)
of various oil types form the basis to interpret ORS images.
However, unlike controlled experiments in the laboratory,
because ORS images are collected under various atmospheric

and oceanic conditions as well as under different observing
geometry (collectively, they are called observing conditions),
additional factors need to be considered. These include (1)
the strength of sun glint, which is a function of primarily
wind and observing geometry; (2) the scale of observations
and mixed pixels; and (3) water types (clear or turbid). Such
factors often make interpretation of ORS images difficult,
even though the optical principles are well understood

2.6

Re
fle

ct
an

ce
 (%

)

1.0
500 550 600 650 700

Wavelength (nm)
750 800

2.4

2.2

2.0

1.8

1.6

1.4 Crude oil

Oil emulsion

Increasing oil thickness

1.2

0.12

R
u
 (s

r–1
)

0
500 1000

(a) (b)

~970 nm
(-OH) ~1445 nm

(-OH)

~1295 nm

~915 nm ~1075 nm

~1655 nm
~2200 nm

1500
Wavelength (nm)

2000 2500

WO (80%)
OW (0.6%)

Water
Oil

0.1

0.08

0.06

0.04

0.02
~1130&~1210 nm

(-OH&-CH)

~1725&~1760 nm
(-CH)

~2310&~2348 nm
(-CH)

Figure 3: Reflectance spectra of crude oil (a) and oil emulsions (b) determined from laboratory experiments by Wettle et al. [31] and
Lu et al. [30], respectively.

8

6

4

Ab
so

rp
tio

n 
co

effi
ci

en
t (

m
–1

)

2

0
500 1000 1500

Wavelength (nm)

(a) (b)

2000 2500

1.2%
0.6%
Water

12

8

10

6

4

2

0
500 1000 1500

Wavelength (nm)
2000 2500

Water
45%

80%
Oil

Figure 2: Absorption coefficients of water, Yiyang crude oil, and their mixture at various concentrations determined from laboratory
experiments [30]. The percentage numbers represent oil concentrations in the OW emulsions (a) and WO emulsions (b). These results
agree well in principle with those obtained from another type of crude oil from the Gulf of Mexico [23].

4 Journal of Remote Sensing

D
ow

nloaded from
 https://spj.science.org at N

ational O
ceanic and A

tm
ospheric A

dm
inistration H

eadquarters (M
A

IN
) on January 11, 2024



(Section 2). Below, we elaborate on how these factors affect
the ORS image interpretation through addressing several
common questions.

3.1. Spatial and Spectral Contrasts: Brighter or Darker?
Through a serious a simulations using oil and water IOPs
and various observing conditions, Otremba and coworkers
[25, 27, 40] showed that oil-water contrast depends on the
oil-on-water condition (pure surface oil layer or oil-water

mixture), observing geometry, wind, and wavelength. In
other words, there is no simple answer to the simple question
of whether oil-on-water is brighter or darker than nearby oil-
free water. This is understandable because, depending on the
wavelength, sea state (i.e., surface roughness), and observing
geometry, the various factors in Section 2 may work together
or against each other. For example, oil has a higher refraction
index (~1.5) than water (~1.34), leading to higher surface
Fresnel reflectance. Therefore, surface oil sheens should

0.12
Increasing concentration

R
u
 (s

r–1
)

0
500 1000 1500

(a) (b)

Wavelength (nm)
2000 2500

1.5%
0.6%

0.1%
Water

0.1

0.08

0.06

0.04

0.02

Increasing concentration

0.14

0
500 1000 1500

Wavelength (nm)
2000 2500

90%
70%

45%
Oil

0.12

0.1

0.06

0.08

0.04

0.02

Figure 4: Reflectance changes in response to changes in oil concentrations for (a) OW emulsions and (b) WO emulsions [30]. Note the
opposite directions as indicated by the dashed arrows.

Increasing thickness

0.14

R
u
 (s

r–1
)

0

500 1000 1500
Wavelength (nm)

2000

(a) (b)

2500

0.36 mm
0.24 mm

0.03 mm
Water

0.12 mm

0.12

0.1

0.06

0.08

0.04

0.02

0

0 0.30.20.1 0.4
Thickness of WO emulsions (mm)

0.5 0.6

1655 nm
1295 nm

2200 nm

0.12

0.1

0.06

0.08

0.04

0.02

Figure 5: (a) Reflectance of WO emulsions at a fixed oil concentration of 80%. Note the monotonic increases in the NIR-SWIR wavelengths
with increasing thickness. (b) Reflectance in several NIR-SWIR bands as a function of oil emulsion thickness when oil concentration is fixed at
80%. Figure adapted from Lu et al. [30].

5Journal of Remote Sensing

D
ow

nloaded from
 https://spj.science.org at N

ational O
ceanic and A

tm
ospheric A

dm
inistration H

eadquarters (M
A

IN
) on January 11, 2024



appear brighter than surrounding waters, and this effect will
not be reversed by thin-film optics when oil and water are
treated as a two-layer system [36]. When surface oil becomes
thicker, oil may appear colorful (also called rainbow sheen,
due to light interference) or approach the real true color of
pure oil, which is usually darker than the surrounding water
due to oil’s high absorption coefficient. These form the basis
of the Bonn Agreement (Table 2), where five thickness codes
are used to interpret the various spatial and spectral contrast
of oil on water. The Bonn Agreement has been used by many
governmental agencies for visual and airborne oil spill assess-
ment, for example, by the Australian Marine Safety Author-
ity [41] where digital photos are used to illustrate the 5
thickness codes and their appearance.

However, for satellite ORS imagery, the Bonn Agree-
ment is simply not applicable (e.g., no one has been able
to observe rainbow color from spilled oil in ORS images)
because of

(1) Variable Seawater Reflectance. Due to the variable
concentrations of phytoplankton, colored dissolved
organic matter, resuspended nonliving particles,
and bottom reflectance if the water is optically
shallow, reflectance of oil-free water can change by
>1 order of magnitude, and the reflectance shape
(defined by blue/green or red-green band ratios)
can also change by >2 orders of magnitude [43]. Such
a large variability can change the oil-water contrast if
the same oil is spilled in different waters. This effect
also explains why it is difficult to apply principles
established from tank experiment to ORS ima-
ges—the shallow tank, when not painted black (e.g.,
the Omesett tank used in [44], or the plastic tank
used in [32]), makes the oil-free water very bright,
but most seawaters are much darker.

(2) Mixed Pixel Effect. Oil on water is very patchy [45],
resulting in mixed pixels. The spatial and spectral
contrasts of the oil-containing pixels are the
arithmetic means of contrasts from individual oil
patches and oil-free water within a pixel, making
interpretation more difficult. This is likely one major
reason why the reflectance spectral shapes of oil-
containing pixels often appear different from any

laboratory-measured spectral shape. Although it
might be possible to spectrally unmix the pixel by
assuming several end-member oil spectra, currently
there is no study to show whether or how such
unmixing method works. The mixed pixel effect is
also opposite to the reflectance response to oil con-
centration of WO emulsions (Figure 4(b)), making
interpretation even more difficult.

(3) Variable Observing Conditions. This is perhaps the
most intriguing factor, which can make the same
oil-containing pixel appear completely different in
both spatial and spectral contrasts. Such an effect is
demonstrated by Hu et al. ([12], see their Figure 2)
and Sun and Hu ([17], see their Figure 6), where
Figure 6 shows a few examples from MISR observa-
tions of the DWH oil spill. In these examples, all
observing conditions remain the same except the sat-
ellite viewing angle. Even though, the same oil slick
may turn from positive to negative contrasts or vice
versa, where their reflectance spectral shapes also
change [17]. While the BRDF plays a role, this con-
trast reversal is mainly due to changes in sun glint
strength (LGN, sr

-1), which can be estimated from
wind and solar/viewing geometry [46] using the
Cox and Munk [47] model. The presence of weak to
moderate sun glint can facilitate detection of oil spills
[11, 48], yet stronger sun glint may not only reverse
the spatial contrast but also change the spectral shape
[14, 17, 49, 50]. From statistical analysis of MODIS,
VIIRS, and Landsat images, the following can be gen-
eralized on sun glint (Figure 7).

(i) When LGN is <10-6 sr-1, oil-water contrast due to
surface roughness changes is negligible in MODIS
or VIIRS imagery, suggesting that thin oil films can-
not be detected

(ii) When LGN is >10-6 sr-1 but <10-3 sr-1, sun glint inter-
ference to the reflectance spectral shape of oil-
containing pixels can be neglected, making it possi-
ble to use false-color RGB images to show the vari-
ous color shapes of oil slicks. Figure 8 presents two
examples using AVIRIS and Landsat-8 observations.
In these examples, the wavelengths in the SWIR,
NIR, and red are used as the red, green, and blue
channels to compose the RGB images, where differ-
ent color shades (reddish or greenish) indicate dif-
ferent emulsion types. These are confirmed by the
spectral shapes extracted from representative pixels

(iii) When LGN is >10-3 sr-1 but <10-2 sr-1, sun glint inter-
ference to the reflectance spectral shape of oil-
containing pixels becomes more apparent, making
interpretation of oil types difficult although still pos-
sible. At LGN > 10−2 sr−1, the sun glint interference
becomes dominant in the spectral shape, making
all laboratory-established rules inapplicable

Table 2: The Bonn Agreement [42] on oil appearance and thickness
classes. Note that the color appearance refers to the visible
wavelengths where a human eye can capture in the field or from
low-altitude aircrafts.

Bonn Agreement
Description/appearance Thickness (μm)

Sheen 0.04-0.3

Rainbow 0.3-5.0

Metallic 5.0-50

Discontinuous true color 50-200

Continuous true color >200
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From these observations, to assess oil spills beyond sim-
ple presence/absence detection, the optimal LGN range is
10-6–10-3 sr-1 [14, 17].

3.2. Oil Classification: What Is Possible? From the examples
above, it is clear that when LGN is <10-3 sr-1, the three types
of oil (nonemulsified crude, either sheen or thicker, OW,
and WO emulsions) have distinguishable spectral shapes
(Figure 8), based on which stepwise classification can be per-
formed [17, 18]. Figure 9 shows two examples corresponding
to the AVIRIS and Landsat-8 RGB images in Figure 8. In
such classifications, the pixels of greenish colors in Figure 8
have higher reflectance in the NIR than in the SWIR, there-
fore are classified to be OW emulsions. Likewise, the pixels
of reddish colors in Figure 8 have higher reflectance in the
SWIR than in the NIR, therefore are classified to be WO
emulsions.

However, before the above classification is applied to an
ORS image, the first job is to determine which pixels contain
oil. This alone is not trivial because many surface floating
organisms or materials may cause similar spatial contrasts
as oil slicks, for example, floating macroalgae, microalgae,
pumice rafts, or unknown features [51, 52]. In other words,
except for the SWIR wavelengths where C-H and O-H
absorption features are unique to hydrocarbons, oil does
not have spectral signatures in the visible and NIR wave-
lengths. When the SWIR signal is small due to mixed-pixel
effect, classifying oil-containing pixels from other surface fea-
tures will rely on feature morphology, knowledge on local
environment, or simple classification to rule out other possi-
bilities (e.g., [10]). This is similar to classifying oil-containing
pixels using SAR imagery.

3.3. Oil Quantification through ORS: What Is Possible? For oil
emulsions, after image pixels are classified to contain either
OW or WO emulsions, the principles shown in Figure 4
can be used to estimate oil concentration in each pixel for
each class, as shown in Figure 9. However, because of the
unknown mixing within each pixel and because how such
principles are modulated in the real environment, the oil
concentrations are expressed in relative sense.

When hyperspectral data in the SWIR wavelengths are
available, it is possible to estimate the absolute oil volume
based on the magnitudes of the C-H absorption features from
preestablished spectral library. Clark et al. [23] developed the
USGS Tetracorder shape-matching algorithm to quantify oil
volume per AVIRIS pixel. Unfortunately, such hyperspectral
data are scarce—even during the DWH oil spill AVRIS flight
lines could cover only a small portion of the northeastern
Gulf of Mexico.

When only multispectra data are available such as those
from MODIS or Landsat, based on the principles in
Figure 5(b), quantifying oil thickness after oil type classifica-
tion is still possible. For fixed oil concentration, reflectance in
the SWIR is proportional to oil thickness (or oil volume per
pixel). This provides the basis to estimate oil thickness, at
least on a relative sense. When AVIRIS results derived from
the Clark et al. [23] approach are available, the relative thick-
ness derived from MODIS can be calibrated to absolute
thickness through matching AVIRIS and MODIS data [12].
This way, the advantage of AVIRIS is scaled up to MODIS
coverage, resulting in estimates of oil thickness in the entire
oil footprint. Figure 10 shows such an example.

For nonemulsified oil, because reflectance in the blue
decreases with increasing thickness (Figure 3(a)), a simple

Sun glint strength (LGN, sr–1)
10–6 10–3 10–2

Difficult to 
detect oil films

Optimal range to detect, 
characterize, and quantify oil

Glint more apparent, but oil 
characterization still possible

Glint signal 
dominates, lab-based

rules fail

Figure 7: Schematic graph showing how sun glint may impact the detection and characterization of oil spills [14, 17]. Statistics were
generated using MODIS and VIIRS data. How they may change with finer-resolution data requires more studies.

ThinThinThin

ThickThickThick

EmulsionEmulsionEmulsion

50
km

Figure 6: MISR images collected over the DWH oil spill site on 17 May 2010, 16 : 43 GMT. The RGB images are composed using 867 nm (R),
558 nm (G), and 446 nm (B). The viewing angles and sun glint strengths are annotated. The DWH oil rig location is annotated with a black-
white symbol. Figure adapted from Sun and Hu [17].
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2-layer model can be used to estimate the thickness of the
surface oil layer as [17, 31, 53, 54]

T = 1
2k ln Rw − Ro

R − Ro

� �
, ð1Þ

where Rw is the reflectance of oil-free water, Ro is the asymp-
totic reflectance of thick oil, K is the oil diffuse attenuation
coefficient that may be approximated to be the absorption
coefficient, and R is the reflectance of the oil-containing pixel.

In practice, because different crude oil may have different
Ro and K and these variables are often unknown, it is difficult
to estimate the absolute thickness using Eq. (1). However, it is
still possible to estimate the relative thickness once a pixel is

determined to contain nonemulsified oil, as shown in Sun
and Hu [17].

In summary, based on the above results, stepwise rules
may be established to detect and classify oil-containing pixels
as well as to quantify oil concentration or oil volume as fol-
lows [17, 18]:

(1) Delineate oil-containing pixels based on their
spatial contrast, feature morphology, and regional
oceanography

(2) For oil-containingpixels whose estimated LGN is
<10-3 sr-1, classify them to nonemulsified oil and
oil emulsions based on whether their NIR and
SWIR reflectance are much higher than nearby
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Figure 8: False-RGB showing different oil emulsions from AVIRIS observations (a) and Landsat-8 observations (b), where sample spectra are
shown to the right. AVIRIS RGB channels are 1672, 831.5, and 647.8 nm, respectively. Landsat-8 RGB channels are 1650, 835, and 661 nm,
respectively. Classification results are presented in Figure 9.
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water pixels. For the former, Eq. (1) may be used
to estimate the relative thickness of the surface oil
layer

(3) The oil emulsion pixels are further classified into OW
emulsions and WO emulsions based on their relative
spectral shapes between NIR and SWIR wavelengths
(Figures 8). Relative oil concentrations can then be
estimated, respectively, from these two types using
laboratory-established rules (Figure 9)

(4) Assuming fixed oil concentration in the WO emul-
sions, the thickness of the emulsion layer can also be
estimated for up to 400mm (Figures 5(b) and 10).

When hyperspectral data in the NIR-SWIR wave-
lengths are available (e.g., from AVIRIS), it is possible
to estimate both oil concentration and oil volume in
each pixel, from which the thickness of the surface
oil layer can be estimated [23]

4. Challenges

4.1. Nonoptimal Observing Conditions. As discussed in
Section 3.1, ORS images can be collected under nonoptimal
conditions, making interpretations difficult even though all
governing rules are well understood from laboratory experi-
ments. These mainly include variable seawater reflectance,
mixed pixel effect, and variable sun glint strength, and these
factors may work together or against each other to make
interpretation even more difficult. Figure 11(a) shows such
an example from the HICO measurements over the DWH
oil spill. Several oil-containing pixels (through visual inspec-
tion) are analyzed for their spectral shapes referenced against
nearby oil-free pixels. These pixels appear to contain either
oil emulsions (pixels 1 and 2) or nonemulsified oil (pixel 3),
yet their spectral shapes in Figure 11(b) do not resemble
those in Figure 3(b) for oil emulsions or Figure 3(a) for none-
mulsified oil. Both pixels 1 and 2 show positive contrasts
from nearby water, but the reflectance in the NIR is not much
higher than in the visible, contrary to those shown in
Figure 3(b). Likewise, although pixel 3 shows negative
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Figure 10: Oil volume per MODIS 250m pixel estimated using
MODIS data in the SWIR wavelengths and calibration data from
AVIRIS [12].
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Figure 9: Oil classification and quantification results for AVIRIS (a) and Landsat-8 (b) corresponding to Figure 8. Note that because of lack of
validation, oil concentration is estimated in relative units.
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contrast from nearby water, the contrast is nearly the same in
all wavelengths, contrary to those shown in Figure 3(a). It is
therefore difficult to classify these pixels based on the rules
established above. Clearly, more work is required to under-
stand what caused such spectral shapes.

4.2. Automation. To date, all oil spill applications of ORS
imagery require some degrees of manual work or at least
human inspection to help delineate oil footprint, from which
objective and stepwise classification methods may be applied.
This is mostly because of the difficulties in discarding pixels
containing clouds, cloud shadows, or other features that
make automatic delineation difficult. For example, for the
DWH oil spill assessment, none of the existing cloudmasking
methods worked because they were not designed to mask
clouds in the presence of oil emulsions and strong sun glint
[12]. Even the time-consuming cloudmasking through a
probability density function (PDF) still resulted in occasional
artifacts. Although manual work is acceptable for individual
oil spill cases, it makes it difficult or impossible to process
long-term time series data in large regions for systematic oil
spill assessment. How to minimize such manual effort
requires further investigations.

4.3. Validation and Uncertainties. While validating ORS-
derived oil presence/absence is relatively easy through field
observations, validating other derived oil characteristics
(emulsion type, concentration, volume, or thickness) is diffi-
cult because (1) it is extremely difficult to measure surface oil
concentration, volume, or thickness in the wavy sea from a
moving boat (see review by [33]), and (2) oil-on-water is very
patchy (submeter to meter scale). Even if (1) is possible, the
difficulty in (2) will make it nearly impossible to relate the
field measurement to a colocated ORS image pixel. Such a
problem of mixed pixel effect is not only typical for oil spill
remote sensing but also typical for remote sensing of small

surface features such as Sargassum or Ulva macroalgae.
Indeed, to our best knowledge, no oil spill remote sensing
paper has quantitative validations using field measurements
due to the above difficulties.

However, this does not mean that uncertainties cannot be
quantified using other means. One such method is through
the use of high-resolution (e.g., ~ meters) data or field-
collected digital photos. Although the information from
these data is rather qualitative, they can still be used in a sta-
tistical fashion to evaluate the classification results from
coarse-resolution sensors [12]. Another way is to correlate
with field mitigation effort (e.g., burning, booming, and
physical collection), as the effort is mostly targeted to thick
oil only. In turn, once the classified results are validated this
way, they can be used to guide field mitigation activities.

4.4. Recommendation for Future Efforts. Based on the dem-
onstrations above, it is understood that under which observ-
ing conditions detecting, classifying, and quantifying oil
spills are possible using ORS imagery and, more importantly,
how to perform these tasks. It is also understood that under
what observing conditions such tasks are difficult or impossi-
ble to carry out. With this knowledge, developed methodol-
ogy, and availability of multisensor data, it is expected that
ORS imagery will be more and more used in an operational
fashion to assess oil spills in the ocean. One such application
is to find the location of “actionable” oil which can be burned
or skimmed; in such cases, only relative thickness is relevant.
However, there is still a lot of room to further improve the
technology in a number of aspects.

First, most laboratory or outdoor experiments have non-
realistic water environments because the containers are
either too small or too bright, or the water in the containers
does not mimic the typical ocean waters. More experiments
using more realistic facilities are required to improve oil
quantification.
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Figure 11: HICO image collected on 12 May 2020 showing oil slicks around the Deepwater Horizon oil rig (red dot, 28.7366°N,
88.3660°W). The image covers an area of 28.5–29.1°N and 88.5–87.7°W. Three locations are selected to analyze their spectral contrasts
against a nearby water location (marked as “R” for reference), whose spectra are shown to the right. The y-axis shows the Rayleigh
corrected reflectance (Rrc) referenced against the water pixel. Each spectrum is a 3 × 3 average over the center location, where vertical
bars indicate standard deviations.
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Second, because interpretation of oil types becomes diffi-
cult once LGN is >10-2 sr-1, and because the current model to
estimate LGN is for oil-free water, more effort is required to
model and remove LGN from oil-containing pixels. For exam-
ple, measurements from polarimeters, which will be available
from the NASA PACE mission (Plankton, Aerosol, Cloud,
ocean Ecosystem), may be used to estimate refraction index
of the surface layer [55], therefore helping to estimate LGN
from an oiled surface instead of from oil-free water.

Third, because one major obstacle in interpretation
comes from the mixed pixel effect, more effort is required
to understand how various oil patches, after linear combina-
tion within a pixel, may change the pixel’s spectral response
and, in turn, how to unmix the pixel’s spectra to estimate
oil type and quantify oil concentration or volume at subpixel
scale.

Finally, more effort is required to develop reliable
methods to measure or estimate oil thickness in the field in
order to provide a direct validation of satellite-based esti-
mates. Even if oil is patchy, a large number of measurements
randomly in a large area are still useful for validating pixel-
wise estimates from ORS images.

5. Summary and Conclusion

In ORS imagery, oil-containing pixels can be detected and
characterized for two reasons, both due to oil’s optical prop-
erties: oil has a higher refraction index than water, thus can
change surface Fresnel reflectance from the oil-modulated
surface roughness, and oil has much higher absorption coef-
ficient than water and also higher scattering coefficient than
water when oil is mixed with water to form emulsions.
These properties, combined with the various observing con-
ditions in the ocean, form the fundamental basis to detect
oil presence/absence and to characterize oil type and
estimate oil concentration or thickness despite various inter-
ference factors.

While the detection of presence/absence is not unique to
ORS images as SAR can do an equally good or even better
job, characterizing oil type and quantifying oil concentration
or thickness (even in a relative sense) make ORS advanta-
geous over other technique on oil spill assessment. This is
especially true when considering that many multiband ORS
sensors at various spatial resolutions and revisit frequencies
are currently in orbit with data freely available. The question
is how to take advantage of such a capacity, how to interpret
the imagery data, and how to understand uncertainties and
limitations.

Through reviewing the most recent literature and
through demonstrations, we hope to clarify the confusion
in the community on the potentials and limitations of ORS
technique in oil spill assessment. Specifically, ORS offers the
capacity beyond field-based visual interpretation of oil spills,
and the capacity is also well beyond those summarized in
recent reviews [2–4]. In particular, in both theory and prac-
tice, the following are possible with ORS imagery as long as
there are spectral bands in the visible, NIR, and SWIR
wavelengths:

(1) Detect surface oil presence/absence

(2) Classify oil types as nonemulsified, OW emulsions,
and WO emulsions from the detected oil-
containing pixels

(3) Quantify oil concentrations in all three types in rela-
tive units

(4) Quantify oil volume or thickness per image pixel of
up to 400μm

If SWIR bands are not available, differentiating OW from
WO emulsions becomes difficult, but it is still possible to dif-
ferentiate nonemulsified oil from oil emulsions. On the other
hand, the availability of hyperspectral data in the SWIR
wavelengths makes it possible to quantify oil volume at sub-
pixel scale.

All these possibilities are based on the physical principles.
However, more work is required to improve such qualitative
and quantitative interpretations of ORS imagery, especially
regarding validations and uncertainty estimations. With
more satellites carrying OSR sensors being launched in the
orbit in the coming decade including NASA’s PACE mission,
we expect to see increased usage of ORS imagery in oil spill
assessments.
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Optical remote sensing (ORS) of reflected sun light has been used to assess oil spills in the ocean for several decades.
While most applications are toward simple presence/absence detections based on the spatial contrast between oiled
water and oil-free water, recent advances indicate the possibility of classifying oil types and quantifying oil volumes
based on their spectral contrasts with oil-free water. However, a review of the current literature suggests that there is
still confusion on whether this is possible and, if so, how. Here, based on the recent findings from numerical models,
laboratory measurements, and applications to satellite or airborne imagery, we attempt to clarify this situation by
summarizing (1) the optics behind oil spill remote sensing, and in turn, (2) how to interpret optical remote sensing
imagery based on optical principles. In the end, we discuss the existing limitations and challenges as well as pathways
forward to advance ORS of oil spills.
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